
. 

5. 

6. 
7. 
8. 
9. 

V. E.  Chehalin and Yu. I.  Chistov,  "Exper imen ta l  invest igat ion of heat t r a n s f e r  in a conical  supersonic  
nozzle ,  ~ T r .  TsAGI ,  No. 1146 (1969). 
N. I. Khvostov,  A. D. Sukhobokov, V. E.  Chekalin,  and K. N. Skirda,  I n z h . - F i z .  Zh . ,  29, No. 1 
(1975). 
M. D. Zdunkevich,  R.  M. Sevas t ' yanov ,  and N. A. Zykov,  T r .  TsAGI,  No. 1165 (1969). 
N. J .  Khvostov,  NASA CR-2569,  Appendix C (July, 1975). 
T .  A. T i m o f e e v a  and Yu. I .  Chistov,  T r .  TsAGI,  No. 1403 (1972). 
N. B. Vargaf t ik ,  Tab les  on the The rm o phys i ca l  P r o p e r t i e s  of IAquids and G a s e s ,  Hals ted P r e s s  (1975). 

F L O W  O F  V I S C O U S  I N C O M P R E S S I B L E  L I Q U I D  I N  A 

P L A N E  C H A N N E L  W I T H  A B R U P T  O N E - S I D E D  B R O A D E N I N G  

V .  I .  K o r o b k o ,  ]~. M .  M a l a y a ,  UDC532.516.5 
a n d  V .  K .  S h a s h m i n  

A numer i ca l  solution is obtained fo r  the  Navie r - -S tokes  equations in the  p rob l em of l a m i n a r  
flow of a v iscous  i n c o m p r e s s i b l e  liquid in a plane channel with abrupt  one-s ided  broadening.  
The solution is com pa red  with exper imen t .  

The flow of a v iscous  i n c o m p r e s s i b l e  liquid in a channel with abrupt  broadening is of g r ea t  p rac t i ca l  in-  
t e r e s t .  Such flows a r e  inves t iga ted  on the bas i s  of the comple te  Navie r - -S tokes  equat ions,  s ince  Viscosity 
effects  play a l a r g e  ro l e .  Abrupt  broadening of the channel  is a s soc ia t ed  with b reakaway  of the flow f r o m  the 
wall  and the fo rma t ion  of a reg ion  of r e t u rn  flow. 

The l amina r  flow of v iscous  i n c o m p r e s s i b l e  liquid in channels with abrupt  broadening has been studied 
both numer ica l ly  and exper imen ta l ly .  In [1], numer i ca l  calculat ions were  made of the flow In an abrupt ly  
broadening and abrupt ly  nar rowing  channel ,  with d i sp lacement  of one of i ts  wal ls ,  at  Reynolds numbers  Re _< 
1000, and the dependence of the  b r e a k a w a y - r e g i o n  length on Re was obtained for  a given broadening.  In [2] 
the per iodic  flow in a channel with abrupt  broadening was invest igated numer ica l ly  for  Re ~ 200. The diff i -  
culty in expe r imen ta l  invest igat ions of such flows is  to  m e a s u r e  the veloci t ies  in the r e tu rn - f low region,  which 
a r e  very  s m a l l .  E l e c t r o t h e r m o a n e m o m e t e r s  and l a s e r  a n e m o m e t e r s  a r e  used for  this purpose .  In [3-5], the 
r e su l t s  of l amina r - f l ow-ve l oc i t y  m e a s u r e m e n t s  in channels were  given,  and in [6] the veloci ty field in the r e -  
c i rcu la t ion  region was m e a s u r e d  for  abrupt  broadening of the channel.  In [7] the development  of an unbounded 
flow along a wall  with a s tep  was invest igated;  the  effect  of the bounda ry - l aye r  th ickness  at the s tep on the 
length of the r ec i r cu la t ion  region was found to  be s m a l l  [7]. In [8] the veloci ty  field was measu red  for  a l a m i -  
nar  field of viscous  i ncom pres s i b l e  liquid in a plane channel with one-s ided  broadening (H/h 1 = 1.5; Re = u0hl/v 

�9 = 146, 250, 382, 458). The n u m e r i c a l  r e su l t s  of [9] show that  the rec i rcu la t ion  region is longer than in [8], 
which is a consequence of the f o r m  of the initial  veloci ty  profi le ;  this effect  was not invest igated exper imenta l ly .  
Analogous conclusions were  reached  in [10, 11] in an exper imen ta l  invest igat ion of the development  of a flow 
of viscous  i n c o m p r e s s i b l e  liquid in channels with " r i b s . "  In [12], the motion of an unbounded flow at a s tep 
was inves t igated numer ica l ly  at Re _> 104. Numer ica l  calculat ion of the flow in a channel with a s tep [13] (H/ 
h 1 = 1.1) showed that  the length of the r e tu rn - f low region is independent of Re (25 ___ Re _< 100). In [14], the 
r e su l t s  of a n u m e r i c a l  calculat ion of the flow in a channel with abrupt  broadening (H/h 1 = 8) a r e  given and, 
in p a r t i c u l a r ,  the  dependence of the length of the r e tu rn - f low region on Re (Re _< 120) was obtained. In [15], 
an analogous invest igat ion was made  for  H/h  1 = 1.5 and Re _< 40. Numer ica l  methods of solving Nav ie r - -  
Stokes equations for  use  with the given type  of flow a r e  reviewed in [16-18]. The p re sen t  work gives  the r e -  
sul ts  of a n u m e r i c a l  calculat ion of a l am i na r  flow of viscous i ncompres s ib l e  liquid in a channel with abrupt  
one-s ided  broadening (H/h 1 = 3.2, 5.2, 6.2, 7.4, 8.2). The calculat ion is made on the bas is  of the comple te  
Navier - -Stokes  equations for  Re = 180. 

The s y s t e m  of Navier - -S tokes  equations descr ib ing the flow of viscous i ncompres s ib l e  liquid in a plane 
channel is of the f o r m  [16] 

Novopolotskii  Polytechnic Inst i tute .  Trans la ted  f r o m  Inzhenerno-F lz ichesk i i  Zhurnal ,  Vol. 35, No. 6, 
pp. 1078-1083, D e c e m b e r ,  1978. Original  a r t i c l e  submit ted October  28, 1977. 
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oy - a---s ~ T  a -Z  ~ ' 
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O y = - O ~  T;  + ' 

a .  + o~, = 0 .  
Ox Oy 

(i) 

Introducing the cu r ren t  function $ and the vor t l c l ty  ~ [16] 

u = Or v = - -  aCiax; ~ = V2~, (2) 

these  equations reduce  to a s y s t e m  of two equations in (~b, ~), which a r e  wri t ten in divergent  f o r m  [18] 

O~ 1 O a 
0-7 = R e  v ~  - -~x (~u) - - ~ y  (~v), ~ = v~, .  

(3) 

Writing finite d i f fe rences  fo r  Eq. (3) leads to a s y s t e m  of f in i te -d i f fe rence  equations in conse rva t ion- law 
f o r m  [19]. 

The p r e sen t  work uses  an explicit  t w o - l a y e r  d i f ference  scheme  of s e c o n d - o r d e r  accu racy  with a one-  
s ided approx imat ion  of the convection t e r m s .  The diffusion t e r m s  in Eq. (3) a r e  wri t ten using cen t ra l  d i f fe r -  
ences .  In t e r m s  of convect ive t r a n s f e r ,  informat ion  pas ses  into a cell  only f r o m  cells that  lie u p s t r e a m  f r o m  
it [20], and t h e r e f o r e  the convect ive t e r m s  a r e  wri t ten using d i f fe rences  in the u p s t r e a m  di rec t ion  with an ac -  
curacy  of 0(h2). When the sign of the veloci ty  changes c lose  to the nodal point,  it is n e c e s s a r y  to change the 
f o r m  of the basic  s c h e m e ,  according  to which d i f fe rences  a r e  wri t ten in the ups team direct ion.  At a dis tance 
of one spa t ia l  s t ep  f r o m  the boundary of the reg ion ,  a cen t r a l -d i f f e rence  approximat ion  is used for  the convec-  
t ive  t e r m s .  The Laplace  ope ra to r  in Eq. (3) is approx imated  by cent ra l  d i f fe rences .  Thus ,  Eq. (3) is approx i -  
mated  by a f in i te -d i f fe rence  s y s t e m  with an e r r o r  of 0(At + h2). 

The s tabi l i ty  of the resu l t ing  f in i t e -d i f fe rence  s y s t e m  in (r ~) was analyzed by the Neumann method [17]. 
The s tabi l i ty  condition for  the given s y s t e m  was taken in the form:  At _< aAx 2, where a is some  constant of o r -  
de r  1 /2 .  

in solving the f in i te -d i f fe rence  s y s t e m ,  it is n e c e s s a r y  to fo rmula te  boundary conditions for  the vor t ic i ty  
~. These  conditions may be obtained approx imate ly  using the values of the cu r ren t  function r a l ready found. 
In [21] di f ferent  means  of specifying the boundary conditions for  ~ a r e  given.  

The init ial  and boundary conditions for  flow in a plane channel with abrupt  one-s ided  broadening (Fig. 1) 
a r e  

%b= 1, ~ = 0 ,  o~ = 0  on ABC, 
Oy ax 

O~ O~ _ 0  on OD, -~=0,  --~-y = 0 ,  ax 

Y 

* = I': (Y) dy o~ OA, 
b 

O_~ = 0 ,  0___*~ = 0  on DC, 
ax Ox 

~ 2 ( * ~ + , - - * ~ )  . , / , (y)  on OA, 
h2 

(4) 
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Fig. 2. Velocity prof i les in a channel with one-sided broadening: the con- 
tinuous lines show the results of calculation, while the points are exper i -  
mental data; a) H/h  t = 3~2; b) 5.2; c) 6.2; d) 7.4. x,  ram. 
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Fig.  3. Rec i r cu l a t i on - r eg lon  length 
as a function of the  deg ree  of channel 
broadening:  1) calculat ion by the 
s cheme  outl ined;  2) expe r imen ta l  data.  

= 8r162247162 on ABC and OD, (4) 
2h z 

where  w is a boundary point,  and w + 1 and w + 2 a r e  adjacent  boundary points;  f(y) is the given veloci ty 
dis tr ibut ion at the inlet .  Note that  the condition at the line DC in Eq. (4) cor responds  to leveling out of 
the flow conditions f a r  downs t ream.  In the calculat ion,  the condition at  the  line DC is taken at a finite 
d is tance  f r o m  the s~ep. The condition of DC is sa t i s f ied  using a nonuniform gr id  in x, so as not to in-  
c r e a s e  the number  of g r id  points no m a t t e r  how fa r  away the condition at DC is taken.  In [2] the 
Navier - -Stokes  equations were  closed downs t ream using the bounda ry - l aye r  equations.  In [10], l inear  in-  
te rpola t ion  of the cu r ren t  function and the vor t ic i ty  inside the  flow region was used at the line DC. 

The solution of the resu l t ing  f in i te -d i f fe rence  s y s t e m  of equations was obtained as follows. Suppose that  
a t  a ce r t a in  t ime  the gr id  functions ~n,j, ~ , j  a r e  known. F r o m  the di f ference  analog of the f i r s t  re la t ion  in 

Eq. (3), i t  is then poss ib le  to find ~n+1 at  the internal  points of the gr id  region.  Using the Zeidel '  i te ra t lonal  
i,j 

method [21] to solve the d i f fe rence  analog of the second re la t ion  in Eq. (31 for  the known boundary values of 
7hn+l the v o r t i c e s  n+l at  the boundary a r e  ~n+t in Eq. (4), ~b n+l is found inside the region.  F r o m  the values  of ~i,j ' ~i,j 

u , j  i,j 
found. Thus,  va lues  of ~n+l and ~n+l a r e  obtained o v e r  the whole flow region.  The calculat ion was c a r r i e d o u t  

i,j i,j 
on an M-220M computer :  the m a x i m u m  number  of points of the calculat ion gr id  was 1500; the accu rac y  of the 
Zeidel '  i te ra t ion was  0.001; the gr id  s tep  Ax = Ay = h = 0.1; and the t i m e  step At = 0.01. The p r i ~ o u t  gave  the 
ve loc i ty  p rof i l es  u, v at any c r o s s  sec t ions  of the channel,  and the coordinate  values  of the cu r r en t  l ine r  = 
const  for  x = x  i. At the end of the calculat ion,  the f ie lds  of the cu r r en t  function r and the vor t ic i ty  ~ w e r e  

pr in ted  out. 

A Dlza -~ l ek t ron lk  t h e r m o a n e m o m e t r i c  appara tus  was used for  an exper imenta l  invest igat ion.  The  bas ic  
p a r a m e t e r s  of the appara tus  and s ing l e -wi re  pickups used to m e a s u r e  the  velocity field were  as follows: wire  
d i a m e t e r  d = 5~; wi re  length l = 1.5 ram; accuracy  of the appara tus  at  low veloci t ies  (up to 4 m / s e c ) ,  0.2%. The 
veloci ty field was m e a s u r e d  a c r o s s  the channel c ro s s  sect ion for  channel broadening cha rac t e r i zed  by the ra t io  
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H/h 1 = 3.2, 5.2, 6.2, 7.4, and 8.2. The m a x i m u m  veloci ty  at the channel inlet  was u m = 1.8 m / s e c .  The 
Reynolds number  Re = umhl /v  = 180. The m e a s u r e m e n t s  showed that  the veloci ty field at  the channel outlet 
be fore  broadening is desc r ibed  by the fo rmula  for  l amina r  flow in a plane channel 

U = l _  4 y2 
am h ~  

Numer ica l  and exper imen ta l  veloci ty  dis t r ibut ions  in the channel a r e  shown in Fig.  2 for  H/h I = 3 .2 ,  
5.2, 6.2, and 7.4. The numer i ca l  calculat ions give a l a r g e r  value of the r a t e  at which the flow reaches  p e r -  
fect ly  developed l amina r  conditions a f t e r  broadening than was obse rved  exper imen ta l ly .  Since the condition 
at the line DC cor re sponds  to the condition of f low-equal izat ion at  infinity,  and this condition is imposed at a 
f ini te  d is tance  f r o m  the s t ep ,  which mus t  affect  the m o r e  rapid equal izat ion of the flow. In Fig.  3, the change 
in r e c i r cu l a t i on - r e g i on  length is shown as a function of the deg ree  of channel broadening.  It is evident f rom 
F igs .  2 and 3 that  the r e su l t s  of numer i ca l  calculat ion a r e  in good a g r e e m e n t  with the exper imenta l  data .  

NOTATION 

x, y ,  d imens ion less  coordinates  r e f e r r e d  to the c h a r a c t e r i s t i c  length of the channel L (Fig. 1); u, v, x, 
and y, components  of the veloci ty ,  r e f e r r e d  to the c h a r a c t e r i s t i c  ve loci ty  u0; P, d imens ion less  p r e s s u r e ;  Re = 
u0L/v,  Reynolds number ,  composed  of the c h a r a c t e r i s t i c  veloci ty u0, the c h a r a c t e r i s t i c  length L,  and the 
k inemat ic  v i scos i ty  v; i ,  j ,  indices of the g r id  points ove r  the x and y axes ;  n, i t e ra t iona l  index; Ax, Ay, gr id  
s teps  along the x and y axes ;  At, t i m e  step;  urn, m a x i m u m  inlet veloci ty  at  channel axis ;  hi, H, channel half-  
width at  inlet  and outlet (Fig. 1); V 2, Lap lace  ope ra to r .  
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U S I N G  T H E  T H E O R Y  O F  T H E  V O L U M E T R I C  F I L L I N G  OF 

M I C R O P O R E S  T O  C A L C U L A T E  T H E  S O R P T I O N  O F  

E L E C T R I C A L L Y  I N S U L A T I N G  C E L L U L O S E  M A T E R I A L S  

L .  S .  K a l l n t n a  a n d  N .  E .  G o r o b t s o v a  UDC 533.583.2 

It is shown that  the  theory  of the vo lumet r i c  fil l ing of m l c r o p o r e s  may  be used  to calculate  
sorp t ion  i s o t h e r m s  and the spec i f ic  i s o t h e r m a l  m o i s t u r e  capaci ty  of e l ec t r i ca l ly  insulating 
ce l lu lose  m a t e r i a l s .  

In [1, 2] values  of the  equi l ibr ium m o i s t u r e  content of e l ec t r i ca l ly  insulat ing cel lulose  m a t e r i a l s  were  
given for  a wide r ange  of so rp t ion  p a r a m e t e r s  - -  t e m p e r a t u r e  and p r e s s u r e .  As noted in [1, 2], the sorpt lon 
i s o t h e r m s  of ce l lu lose  m a t e r i a l s  for  w a t e r - v a p o r  p r e s s u r e s  in the r ange  of p rac t i ca l  impor tance  for  the v a -  
cuum drying of e l ec t r i ca l  insulat ion (P /Ps  < 0.3) a r e  desc r ibed  by an equation of Freundl ich  type 

W' e = c_/:~, (1 )  

where  c and n a r e  t e m p e r a t u r e - d e p e n d e n t  constants  cha rac te r i z ing  the given m a t e r i a l .  

The s o r p t i o n - i s o t h e r m  equation of Freundl ich  type may be r e g a r d e d  as a pa r t i cu l a r  case  of the g e n e r -  
a l ized a b s o r p t i o n - i s o t h e r m  equation for  m lc ropo rous  sorbents  based on the theory  of vo lume fi l l ing,  which in 
energy f e r m i  is wri t ten as follows [3-5] 

We = Wo exp [--  (A/E) 'n l ,  (2) 

where  W 0 is a ce r t a in  value of the adsorp t ion ,  cal led the l imit ing value of the adsorpt ion;  A, d i f ferent ia l  work 
of adsorp t ion  (A = RTln P s / P ) ;  E,  c h a r a c t e r i s t i c  adsorp t ion  energy de te rmined  at the cha r ac t e r i s t i c  point for  
a fil l ing of W e / W  0 = | =exp  ( - 1 )  = 0.368; m ,  power  index o r  the rank  of the dis t r ibut ion.  Toge ther ,  m 
and E c h a r a c t e r i z e  the m e c h a n i s m  of the  sorp t ton  in teract ion.  When m = 1, Eq. (2) may  be wri t ten in the 
Freundl ich  f o r m  in Eq. (1), and the e m p i r i c a l  coefficients  n and c in Eq. (1) a r e  then [4] 

n = R T / E ,  (3) 

c = W0PT". (4) 

Equation (2) p rovides  a good desc r ip t ion  of the sorp t ion  equi l ibr ium of var ious  ga se s  and vapors  on m i c r o -  
porous sorben ts :  ac t ive  charcoa l s  of var ious  types ,  zeol i tes  [3-5]. 

With a view to  broadening the  c lass  of adso rba t e - - adso rben t  s y s t e m s  for  which the engineering method 
of equ i l ib r ium-adsorp t ion  p roposed  in [5] may be used ,  i t  is of in te res t  to ana lyze  expe r imen ta l  dam on the 
equi l ibr inm m o i s t u r e  content of e l ec t r i ca l ly  i n s u l a t ~  ce l lu lose  m a t e r i a l s .  The in terac t ion  of wa te r  with 
these  m a t e r i a l s  is a complex p r o c e s s  whose m e c h a n i s m  is by no means  fully unders tood,  especia l ly  at low 
mo i s tu r e  coutents .  According to one viewpoint,  the  ce l lu iose - -wa te r  s y s t e m  should be r ega rded  as the in t e r -  
act ion of a po lymer  with the vapors  of l ow-molecu la r  solubil i ty of water  in ce l lu lose  [7]. Real  cel lu lose  s y s -  
t e m s  - -  espec ia l ly  those  which a r e  e lec t r i ca l ly  conducting - -  const i tute  complex f i be r - -po rous  s y s t e m s ,  which 
may contain not only dissolved and adsorpt ion-bound wate r ,  but a l so  mo i s tu re  bound by cap i l l a ry  and osmot ic  
~orces .  

A. V. Lykov Insti tute of Heat and Mass T r a n s f e r ,  Academy of Sciences of the Be lornss ian  SSR, Minsk. 
T rans l a t ed  f r o m  Inzhenerno-F iz ichesk i l  Zhurnal ,  Vol. 35, No. 6, pp. 1084-1088, D e c e m b e r ,  1978. Original 
a r t i c l e  submit ted  October  27, 1977. 

1474 0022-0841/78/3506-1474 $07.50 �9 1979 Plenum Publishing Corpora t ion  


